[image: ] Sample question solutions
Further proofs by mathematical induction
Use mathematical induction to prove that for all integers 

Step 1: Base case: Prove true for 


True for 

Step 2: Assume that the statement is true for 

Step 3: Inductive step: Prove the statement to be true for 
Show   


Now, , from step 2 (the assumption)



Step 4: Concluding statement: If true for , proven true for . Since true for , true for , , … therefore, true for all integers .




Prove that  is divisible by  if  is odd 

Step 1: Base case: Prove true for 
, which is divisible by 13
True for 

Step 2: Assume that the statement is true for  where  is an odd integer.
, where  is an integer
or  and 

Step 3: Inductive step: Prove the statement to be true for where  is an odd integer
Show , where  is an integer

Now,  from step 2. (the assumption)

 which is divisible by 13 as   is an integer.

Step 4: Concluding statement: If true for , proven true for . Since true for , true for , , … therefore, true for any odd number .

Prove that  is a multiple of  if  is even

Step 1: Base case: Prove true for 
, which is divisible by 8
True for 

Step 2: Assume that the statement is true for  where  is an even integer.
, where  is an integer
or  

Step 3: Inductive step: Prove the statement to be true for where  is an even integer
Show , where  is an integer

Now,   from step 2 (the assumption)

Now, , as  is even.
 which is divisible by 8 as  is an integer.

Step 4: Concluding statement: If true for , proven true for . Since true for , true for , , … therefore, true for any even number .

Proofs by mathematical induction involving sigma notation
1. 

Step 1: Base case: Prove true for 


True for 

Step 2: Assume that the statement is true for 
 or

Step 3: Inductive step: Prove the statement to be true for 
Show 


Now,   from step 2 (the assumption)



Step 4: Concluding statement: If true for , proven true for . Since true for , true for , , … therefore, true for any integer .




 (NESA topic guidance)

Step 1: Base case: Prove true for 


True for 

Step 2: Assume that the statement is true for 
 or

Step 3: Inductive step: Prove the statement to be true for 
Show 


Now,   from step 2 (the assumption)



Step 4: Concluding statement: If true for , proven true for . Since true for , true for , N, … therefore, true for any integer .






Step 1: Base case: Prove true for 


True for 

Step 2: Assume that the statement is true for 
 or 
 
Step 3: Inductive step: Prove the statement to be true for 
Show 


Now,   from step 2 (the assumption)



Step 4: Concluding statement: If true for , proven true for . Since true for , true for , , … therefore, true for any integer .






Step 1: Base case: Prove true for 


True for 

Step 2: Assume that the statement is true for 
 or 
 
Step 3: Inductive step: Prove the statement to be true for 
Show 


Now,   from step 2 (the assumption)


Step 4: Concluding statement: If true for , proven true for . Since true for , true for , , … therefore, true for any integer .






Step 1: Base case: Prove true for 


True for 

Step 2: Assume that the statement is true for 
 or 

 
Step 3: Inductive step: Prove the statement to be true for 
Show

Now,   from step 2 (the assumption)


Step 4: Concluding statement: If true for , proven true for . Since true for , true for , , … therefore, true for any integer .




 (NESA topic guidance)

Step 1: Base case: Prove true for 


True for 

Step 2: Assume that the statement is true for 
 or 
 

Step 3: Inductive step: Prove the statement to be true for 
Show 
 
 

Now,   from step 2 (the assumption)


Step 4: Concluding statement: If true for , proven true for . Since true for , true for , , … therefore, true for any integer .


Prove results using mathematical induction
Inequalities:
1. , for positive integers 

Step 1: Base case: Prove true for 



True for 

Step 2: Assume that the statement is true for 

Step 3: Inductive step: Prove the statement to be true for 
Show  by proving 

 for  as  increases quicker ( than  decreases (
 and 

Step 4: Concluding statement: If true for , proven true for . Since true for , true for , , … therefore, true for all integers .

Prove by mathematical induction that:  (NESA topic guidance)
Step 1: Base case: Prove true for 




True for 

Step 2: Assume that the statement is true for 

Step 3: Inductive step: Prove the statement to be true for 
Show 
 


Compare the centre to the LHS from the assumption. Now 


Compare the centre to the RHS from the assumption. Now 



and  when 




Step 4: Concluding statement: If true for , proven true for . Since true for , true for , , … therefore, true for all integers .





Let  be a fixed, non-zero number satisfying . 
Use the method of mathematical induction to prove that  for  and hence deduce that  for 

Prove that  for  
Step 1: Base case: Prove  for 
 as 


Step 2: Assume that the statement is true for 
i.e. 
Step 3: Inductive step: Prove the statement to be true for .





 as  


Step 4: Concluding statement: If true for , proven true for . Since true for , true for , , … therefore, true for all integers .

Deduce that  for 

 




Algebra:
1. 
i) Show that  can be written as 



ii) Using the result in part 1, or otherwise, prove by mathematical induction that, for 
 (NESA topic guidance)

Step 1: Base case: Prove true for 



True for 

Step 2: Assume that the statement is true for 


Step 3: Inductive step: Prove the statement to be true for 
Show 








 using part i)





Step 4: Concluding statement: If true for , proven true for . Since true for , true for , , … therefore, true for all integers .
Divisibility:
1.  is divisible by 5 for any positive integer 

Step 1: Base case: Prove true for 
which is divisible by 5 ()
True for 

Step 2: Assume that the statement is true for 
, where  is an integer


Step 3: Inductive step: Prove the statement to be true for 
Show , where  is an integer


Now, from step 2 (the assumption)



, which is divisible by 5 as  is an integer

Step 4: Concluding statement: If true for , proven true for . Since true for , true for , , … therefore, true for any positive integer .




Find the values of  when  and . Make a conjecture about a number which divides  and prove your conjecture by induction. (divisible by 7) (NESA Topic guidance)

When , 
When , 
When , 
When , 






Conjecture:  is divisible by 7 when 

Step 1: Base case: Prove true for 
which is divisible by 7
True for 

Step 2: Assume that the statement is true for 
, where  is an integer


Step 3: Inductive step: Prove the statement to be true for 
Show , where  is an integer

Now, from step 2 (the assumption)



, which is divisible by 7 as  is an integer.

Step 4: Concluding statement: If true for , proven true for . Since true for , true for , , … therefore, true  any whole number .



Calculus:
1. Prove that for any positive integer  , 

Step 1: Base case: Prove true for 


By first principles 

True for 

Step 2: Assume that the statement is true for 

Step 3: Inductive step: Prove the statement to be true for 
Show 


Using the product rule

Now, from step 1 and from step 2 (the assumption)






Step 4: Concluding statement: If true for , proven true for . Since true for , true for , , … therefore, true for any positive integer .




Use integration by parts to show that for  (NESA topic guidance)

Step 1: Base case: Prove true for 

Using the double angle formula for cosine:














True for 

Step 2: Assume that the statement is true for 


Step 3: Inductive step: Prove the statement to be true for 
Show 

Let

Using integration by parts:










  as required.





[bookmark: _GoBack] for  when .

Step 1: Base case: Prove true for 




Apply the product rule with , , 



True for 

Step 2: Assume that the statement is true for 

Step 3: Inductive step: Prove the statement to be true for 
Show 

Now, from step 2 (the assumption)

Apply the product rule with , , 





Step 4: Concluding statement: If true for , proven true for . Since true for , true for , , … therefore, true for any positive integer .





 for  when 

Step 1: Base case: Prove true for 
 







True for 

Step 2: Assume that the statement is true for 

Step 3: Inductive step: Prove the statement to be true for 
Show   


Now, from step 2 (the assumption)







Step 4: Concluding statement: If true for , proven true for . Since true for , true for , , … therefore, true for any positive integer . 


Probability:
1. Prove by mathematical induction that: 

Step 1: Base case: Prove true for 






True for 

Step 2: Assume that the statement is true for 

Step 3: Inductive step: Prove the statement to be true for 
Show 

Now, from step 2 (the assumption)
 
 
 
 
 (splitting out  and  respectively)
 
 
  (Given 
 
 



Step 4: Concluding statement: If true for , proven true for . Since true for , true for , , … therefore, true for any whole number .


Proof showing 













Geometry:
1. Prove that the sum of the exterior angles of an -sided plane convex polygon is 360°, 
Let be the exterior angle sum of an -sided polygon, prove 

Step 1: Base case: Prove true for 

[image: ]

 (supplementary angles)
 (supplementary angles)
 (supplementary angles)


 (angle sum of a triangle)




True for 

Step 2: Assume that the statement is true for 
  

Step 3: Inductive step: Prove the statement to be true for 
Show   
Let the polygon be defined by the points , and polygon  is defined by (highlighted below)
[image: ]
(from step 2, the assumption)

 (vertically opposite angles)

 (exterior angle of a triangle)



Step 4: Concluding statement: If true for , proven true for . Since true for , true for , , … therefore, true for all integers . 



If  straight lines are drawn in the plane, then the total number of intersections cannot exceed  for , 

Step 1: Base case: Prove true for 
(zero intersections when one straight line is drawn)


True for 

Step 2: Assume that the statement is true for 


Step 3: Inductive step: Prove the statement to be true for 
Show 


Let the lines be defined by the 

The maximum number of intersections is equal to the number of intersections from  lines plus all the intersections created by , which is at most intersections if it intersects all other lines.

Now, from step 2 (the assumption)








Step 4: Concluding statement: If true for , proven true for . Since true for , true for , , … therefore, true for any positive integer .



Suppose we draw on a plane  lines in ‘general position’, ie with no three concurrent and no two parallel. Let  be the number of regions into which these lines divide the plane, for example  in the following diagram:
[image: ]
By drawing diagrams, find  and .


[image: ]

[image: ]

[image: ]

[image: ]




[image: ]
From these results, make a conjecture about a formula for .
Lead the students to the formula:
Method 1: Using a recursive formula:
Recognise that 








 (arithmetic sequence with )


Method 2:

This can be achieved by examining several diagrams in detail such as :
[image: ]
It can be observed every point of intersection is the lowest vertex of some region. 
The maximum number of such intersection is  (see previous question)
There are 5 additional regions,  additional regions. 



Prove this formula by mathematical induction. (NESA topic guidance) 
Method 2: Prove , . 
Step 1: Base case: Prove true for 



True for 

Step 2: Assume that the statement is true for 
,
Step 3: Inductive step: Prove the statement to be true for 
Show 


Let the lines be defined by the 
[image: ]
The number of regions can be observed as being the number of regions for  lines plus an additional  regions formed when crosses the  existing lines. Note: It can be observed that the additional line creates 5 additional regions when crossing the 4 observable lines.

Now, from step 2 (the assumption)






Step 4: Concluding statement: If true for , proven true for . Since true for , true for , , … therefore, true for any positive integer .
Method 2: Prove , . 
Step 1: Base case: Prove true for 



True for 

Step 2: Assume that the statement is true for 

Step 3: Inductive step: Prove the statement to be true for 
Show 

Let the lines be defined by the 
[image: ]
The number of regions can be observed as being the number of regions for  lines plus an additional  regions formed when crosses the  existing lines. Note: It can be observed that the additional line creates 5 additional regions when crossing the 4 observable lines.

Now, from step 2 (the assumption)






 


Step 4: Concluding statement: If true for , proven true for . Since true for , true for , , … therefore, true for any positive integer .


For , the sum of the interior angles of a polygon with n vertices is .
Prove 

Step 1: Base case: Prove true for 
 (angle sum of a triangle)


True for 

Step 2: Assume that the statement is true for 


Step 3: Inductive step: Prove the statement to be true for 
Show 

Let the polygon be defined by the points 

[image: ]
Join 
[image: ]

 (base case)
Now, from step 2 (the assumption)







Step 4: Concluding statement: If true for , proven true for . Since true for , true for , , … therefore, true for any positive integer .

An -sided plane convex polygon has  diagonals for , 

Step 1: Base case: Prove true for 
 (diagonals of a triangle)


True for 

Step 2: Assume that the statement is true for 


Step 3: Inductive step: Prove the statement to be true for 
Show 


Let the polygon be defined by the points 

[image: ]
The number of diagonals is equal to the number of diagonals from a polygon with k sides plus all the diagonals from the point and the diagonal from to .
[image: ]
Diagonals from point  join to points , gives () diagonals from  and one diagonal from  to .
There is a total of  additional diagonals.


Now, from step 2 (the assumption)








Step 4: Concluding statement: If true for , proven true for . Since true for , true for , , … therefore, true for any positive integer .



Proving first-order recursive formula
1. A sequence is given by the recursive formula  for  Prove the general formula for the sequence is 

Step 1: Base case: Prove true for 


True for 

Step 2: Assume that the statement is true for 

Step 3: Inductive step: Prove the statement to be true for 
Show   
 (recursive formula) 
Now, , from step 2 (the assumption)


Step 4: Concluding statement: If true for , proven true for . Since true for , true for , , … therefore, true for all integers .
A sequence is given by the recursive formula  for  Prove the general formula for the sequence is 

Step 1: Base case: Prove true for 


True for 

Step 2: Assume that the statement is true for 


Step 3: Inductive step: Prove the statement to be true for 
Show 
 (recursive formula) 
Now, , from step 2 (the assumption)



Step 4: Concluding statement: If true for , proven true for . Since true for , true for , , … therefore, true for all integers .

A sequence is given by the recursive formula  for  Prove the general formula for the sequence is 

Step 1: Base case: Prove true for 


True for 

Step 2: Assume that the statement is true for 

Step 3: Inductive step: Prove the statement to be true for 
Show   
(recursive formula) 
Now, , from step 2 (the assumption)


Step 4: Concluding statement: If true for , proven true for . Since true for , true for , , … therefore, true for all integers .
A sequence is given by the recursive formula  for  Prove the general formula for the sequence is 

Step 1: Base case: Prove true for 


True for 

Step 2: Assume that the statement is true for 
 
Step 3: Inductive step: Prove the statement to be true for 
Show   
(recursive formula) 
Now, , from step 2 (the assumption)



 
Step 4: Concluding statement: If true for , proven true for . Since true for , true for , , … therefore, true for all integers .
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